6 research outputs found

    Risk factors for comorbid oppositional defiant disorder in attention-deficit/hyperactivity disorder

    Get PDF
    Oppositional defiant disorder (ODD) is highly prevalent in attention-deficit/hyperactivity disorder (ADHD). Individuals with both ADHD and ODD (ADHD + ODD) show a considerably worse prognosis compared with individuals with either ADHD or ODD. Therefore, identification of risk factors for ADHD + ODD is essential and may contribute to the development of (early) preventive interventions. Participants were matched for age, gender, and ADHD-subtype (diagnostic groups), and did not differ in IQ. Predictors included pre- and perinatal risk factors (pregnancy duration, birth weight, maternal smoking during pregnancy), transgenerational factors (parental ADHD; parental warmth and criticism in diagnostic groups), and postnatal risk factors (parental socioeconomic status [SES], adverse life events, deviant peer affiliation). Three models were assessed, investigating risk factors for ADHD-only versus controls (N = 86), ADHD + ODD versus controls (N = 86), and ADHD + ODD versus ADHD-only (N = 90). Adverse life events and parental ADHD were risk factors for both ADHD + ODD and ADHD-only, and more adverse life events were an even stronger risk factor for comorbid ODD compared with ADHD-only. For ADHD + ODD, but not ADHD-only, parental criticism, deviant peer affiliation, and parental SES acted as risk factors. Maternal smoking during pregnancy acted as minor risk factor for ADHD-only, while higher birth weight acted as minor risk factor for ADHD + ODD. No effects of age were present. Findings emphasise the importance of these factors in the development of comorbid ODD. The identified risk factors may prove to be essential in preventive interventions for comorbid ODD in ADHD, highlighting the need for parent-focused interventions to take these factors into account

    Stimulant treatment profiles predicting co-occurring substance use disorders in individuals with attention-deficit/hyperactivity disorder

    Get PDF
    Adolescents with attention-deficit/hyperactivity disorder (ADHD) are at increased risk of developing substance use disorders (SUDs) and nicotine dependence (ND). It remains unclear whether and how stimulant treatment may affect this risk. We aimed to investigate how stimulant use profiles influence the risk of SUDs and ND, using a novel data-driven community detection analysis to construct different stimulant use profiles. Comprehensive lifetime stimulant prescription data and data on SUDs and ND were available for 303 subjects with ADHD and 219 controls, with a mean age 16.3 years. Community detection was used to define subgroups based on multiple indicators of treatment history, start age, treatment duration, total dose, maximum dose, variability, stop age. In stimulant-treated participants, three subgroups with distinct medication trajectories were distinguished (late-and-moderately dosed, n = 91; early-and-moderately dosed, n = 51; early-and-intensely dosed, n = 103). Compared to stimulant-naïve participants (n = 58), the early-and-intense treatment group had a significantly lower risk of SUDs and ND (HR = 0.28, and HR = 0.29, respectively), while the early-and-moderate group had a significantly lower risk of ND only (HR = 0.30). The late-and-moderate group was at a significantly higher risk of ND compared to the other two treatment groups (HR = 2.66 for early-and-moderate, HR = 2.78 for early-and-intense). Our findings show that in stimulant-treated adolescents with ADHD, long-term outcomes are associated with treatment characteristics, something that is often ignored when treated individuals are compared to untreated individuals.</p

    Stimulant treatment profiles predicting co-occurring substance use disorders in individuals with attention-deficit/hyperactivity disorder

    No full text
    Adolescents with attention-deficit/hyperactivity disorder (ADHD) are at increased risk of developing substance use disorders (SUDs) and nicotine dependence (ND). It remains unclear whether and how stimulant treatment may affect this risk. We aimed to investigate how stimulant use profiles influence the risk of SUDs and ND, using a novel data-driven community detection analysis to construct different stimulant use profiles. Comprehensive lifetime stimulant prescription data and data on SUDs and ND were available for 303 subjects with ADHD and 219 controls, with a mean age 16.3 years. Community detection was used to define subgroups based on multiple indicators of treatment history, start age, treatment duration, total dose, maximum dose, variability, stop age. In stimulant-treated participants, three subgroups with distinct medication trajectories were distinguished (late-and-moderately dosed, n = 91; early-and-moderately dosed, n = 51; early-and-intensely dosed, n = 103). Compared to stimulant-naïve participants (n = 58), the early-and-intense treatment group had a significantly lower risk of SUDs and ND (HR = 0.28, and HR = 0.29, respectively), while the early-and-moderate group had a significantly lower risk of ND only (HR = 0.30). The late-and-moderate group was at a significantly higher risk of ND compared to the other two treatment groups (HR = 2.66 for early-and-moderate, HR = 2.78 for early-and-intense). Our findings show that in stimulant-treated adolescents with ADHD, long-term outcomes are associated with treatment characteristics, something that is often ignored when treated individuals are compared to untreated individuals
    corecore